Palais Lecture 7 Normed Spaces and Integration 7 . 1 Norms for Vector Spaces

نویسنده

  • R. Palais
چکیده

• Positivity: N(v) ≥ 0 with equality if and only if v = 0. • Positive Homogeneity: N(αv) = |α|N(v). • Triangle Inequality: N(x1 + x2) ≤ N(x1) +N(x2). If N is a norm for V then we call ρ N (x1, x2) := N(x1−x2) the associated distance function (or metric) for V . A vector space V together with some a choice of norm is called a normed space, and the norm is usually denoted by ‖ ‖. If V is complete in the associated metric (i.e., every Cauchy sequence converges), then V is called a Banach spacee.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Stability of Quadratic Functional Equations

Katsaras 1 defined a fuzzy norm on a vector space to construct a fuzzy vector topological structure on the space. Some mathematicians have defined fuzzy norms on a vector space from various points of view 2–4 . In particular, Bag and Samanta 5 , following Cheng and Mordeson 6 , gave an idea of fuzzy norm in such a manner that the corresponding fuzzy metric is of Kramosil and Michálek type 7 . T...

متن کامل

A Fixed Point Approach to the Fuzzy Stability of an Additive-Quadratic-Cubic Functional Equation

Katsaras 1 defined a fuzzy norm on a vector space to construct a fuzzy vector topological structure on the space. Some mathematicians have defined fuzzy norms on a vector space from various points of view 2–4 . In particular, Bag and Samanta 5 , following Cheng and Mordeson 6 , gave an idea of fuzzy norm in such a manner that the corresponding fuzzy metric is of Kramosil and Michálek type 7 . T...

متن کامل

Fuzzy Stability of an Additive-Quadratic-Quartic Functional Equation

Katsaras 1 defined a fuzzy norm on a vector space to construct a fuzzy vector topological structure on the space. Some mathematicians have defined fuzzy norms on a vector space from various points of view 2–4 . In particular, Bag and Samanta 5 , following Cheng and Mordeson 6 , gave an idea of fuzzy norm in such a manner that the corresponding fuzzy metric is of Kramosil and Michálek type 7 . T...

متن کامل

Lecture 1: Introductory Lecture 2 Basic Definitions

We start with the definitions of metric spaces and normed spaces. Definition 1 Let X be a set, and let d : X ×X → R ∪ {0}. The pair (X, d) is a metric space if for all x, y, z ∈ X, 1. d(x, y) = d(y, x) 2. d(x, y) = 0 ⇔ x = y 3. d(x, y) + d(y, z) ≥ d(x, z) (triangle inequality) Definition 2 A normed space is R for some finite k together with an associated mapping a → ‖a‖ from R to R ∪ {0} such t...

متن کامل

Fuzzy Stability of Additive Functional Inequalities with the Fixed Point Alternative

Katsaras 1 defined a fuzzy norm on a vector space to construct a fuzzy vector topological structure on the space. Some mathematicians have defined fuzzy norms on a vector space from various points of view 2–4 . In particular, Bag and Samanta 5 , following Cheng and Mordeson 6 , gave an idea of fuzzy norm in such a manner that the corresponding fuzzy metric is of Kramosil and Michálek type 7 . T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003